PHYSICAL REVIEW B

VOLUME 1, NUMBER 11 1 JUNE 1970

Heat Capacity of Gadolinium near the Curie Point*}

Edwin A. S. Lewis;t

Department of Physics and Materials Reseavch Laboratory, University of Illinois, Urbana, Illinois 61801

(Received 10 November 1969)

The dependence of the heat capacity of gadolinium on temperature has been observed close
to the ferromagnetic Curie point at about 18°C. An “ac” or temperature-modulation method
allowed the use of very small single-crystal samples. The heat-capacity peak for our best
sample is rounded in a range of 3° at the Curie point (To). Outside this region, good power-
law fits are obtained for a range of values of the critical exponents o (above 7o) and o (below
To), the choice of which depends on the choice of Tc. The entire set of data, including those
in the rounded region, fits an expression derived from a simple macroscopic model of
rounding. The T specified by this fit makes @ =-0.09+0.05 and o’ =—0.32+0.05. Tables
of recent theoretical and experimental results are included for comparison. Our results on
Curie point and rounding are in disagreement with recent conjectures of Cadieu and Douglass

for gadolinium.

I. INTRODUCTION

In the last few years, widespread interest in the
behavior of materials near critical points has
stimulated a lengthening list of experiments’? and
calculations.® The critical behavior of a real sys-
tem often is found to resemble closely that of an
Ising or Heisenberg model, as determined by high-
or low-temperature expansion methods. Still to
be answered, however, is the question: Which
details of a model must be adjusted to correspond
with features of a given material, in order to pre-
dict the critical behavior? The dimensionality of
the system is known to be crucial, and the anisot-
ropy of the interaction is thought to be also, e.g.,
Ising and Heisenberg models behave differently.
Recent calculations for classical (spin-<) magnets
have covered more fully the effects of this anisot-
ropy. *~® It is usually thought, also, that spin is
important in magnets. These may be the only
important details for the “ideal” behavior in which
the transition is not rounded.

Further careful experiments are necessary for
comparison of critical behavior in materials which
differ from each other in various ways, including
the above. The “scaling laws”” which relate the
behavior of various properties near the critical
point also require further comparison with experi-
ment through the measurement of various quan-
tities in the same material. Finally, the causes
of rounding of theoretically sharp peaks or dis-
continuities at the critical point are not clear.

We have measured the temperature variation of
the heat capacity of gadolinium in zero applied
field, in the vicinity of its ferromagnetic Curie
point (7T'¢) at about 18 °C. Gadolinium® is a rare-
earth metal in which the unpaired magnetic elec-
trons are localized in the 4f shell. Interaction
between ions is through indirect exchange, by

J=

means of conduction electrons. Unlike the other
rare earths, gadolinium has low magnetic anisot-
ropy, comparable to that of nickel and iron. Spin-
wave experiments show that “gadolinium behaves
like a classical Heisenberg ferromagnet”® at low
temperatures. The saturation moment per atom
is 7.55up, close to the spin I predicted by Hund’s
rule for the ground state. In comparison with
various theoretical results and with other experi-
ments, gadolinium may give us useful information
on the importance of magnetic anisotropy; how im-
portant spin is in critical behavior; whether the
hexagonal lattice structure makes any difference.

We are looking for the critical indexes a and a’
in the power laws

Cy=A€®+B,  T>T,,
1)

and Cy=A’¢®'+B', T<T,,

where €= (T - T¢)/T¢l, and Tq, a, @', A, A", B,
and B’ are unknown constants. This form of ex-
pression has been found to fit predictions for Ising
and Heisenberg models quite well. In the limit
when a -0,

Cy=-aln€+b, (2)

where A/a~a, and similarly for a’~0, where
A'Ja'~d'.

Section II proceeds to describe the experiment.
In Sec. II the analysis of data is discussed. We
compare our data with power laws, and also with
a rounded curve given by a simple expression
which assumes random variation of T, throughout
the sample. In Sec. IV we present tables of re-
cent results for a and o', from calculation and
from experiment, and compare with our best val-
ues. The disagreement between our observations
of rounding and recent predictions for it are also
discussed. Our corrected relative heat-capacity
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data is recorded in the Appendix.

II. EXPERIMENT
A. Apparatus and Procedure

We use a version of the “ac” method originally
introduced by Kraftmakher® and Sullivan and
Seidel and recently applied at high temperatures
by Handler, Mapother, and Rayl! to measure the
heat capacity of nickel. The sample is attached to
a copper heat sink by means of a thin “heat leak.”
Light pulses strike the sample, causing its tem-
perature to oscillate at a low frequency; the ampli-
tude of this temperature modulation, measured by
a small thermocouple junction attached to the sam-
ple, is inversely proportional to the heat capacity.

Figure 1 shows the sample-heat sink assembly.
The copper heat sink is % in. in diameter. It is
suspended in vacuum, in a can which is immersed
in an ice bath. The (approximately) 80X 60X5 mil
blackened gadolinium sample, the matching piece
of copper foil, and the thin aluminum foil heat-
leak strip form a sandwich, held together by
apiezon H grease, which moves up and down uni-
formly in temperature. One mil copper and con-
stantan thermocouple wires are spot welded to this
copper foil, rather than the gadolinium itself, in
order not to cause any nonuniformity in tempera-
ture across the sample. The copper foil also helps
to even out the temperature across the long dimen-
sions of the sample. Apiezon H grease was cho-
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FIG. 1. Sample heat sink assembly.

sen for its uniform properties over a large range
of temperature; silicon grease had a strong ten-
dency to creep over the sample. The ends of the
aluminum foil strip are greased to the heat sink
with a thin layer of Mylar in between for electrical
insulation.

The emf at 4 cps produced by this thermocouple
is typically about 120 nV rms, corresponding to a
rms temperature modulation of 3 mdeg. This sig-
nal is fed into a Princeton Applied Research (PAR)
HR-8lock-in amplifier with type B preamplifier,
and the resulting dc output appears on a chart re-
corder. The data finally consist of a series of
relative specific-heat values at well-defined tem-
peratures.

The temperature of the heat sink is measured
and controlled within a tolerance of about 1 mdeg,
by a PAR PT-2 thermometer, whose platinum re-
sistance is within a probe inserted into the heat
sink as shown. (Absolute temperatures are known
to +0.2 °Kfrom a rough calibration. ) To reduce
possible thermal gradients within the heat sink, a
second small heat sink is located along the stain-
less-steel tube connecting it to the outside of the
vacuum system. This second piece is controlled
to about a tenth of a degree, using a thermistor,
about 1 deg below the temperature of the main heat
sink. Thus, the power required to heat the main
sink is small, and does not vary much with the
temperature of operation. Both heaters operate
with ac at about 10 ke in order to avoid producing
any magnetic field at the sample.

The temperature difference between the sample
and the sink is measured using the same thermo-
couple that measures the ac temperature ampli-
tude. The cold junction of the copper-constantan
thermocouple is soldered directly to the sink;
periodically its dc voltage is measured using a
Leeds and Northrup K-5 potentiometer, giving the
temperature difference to within a hundredth of a
degree. This represents the tolerance for relative
temperature measurements.

A small focused bulb, whose lens has been sand-
ed to produce a uniform beam, shines upward from
the bottom of the vacuum can and produces the
light spot shown in Fig. 1. The amplitude of the
4-cps square-wave voltage applied to the filament
is controlled as follows: A separate blackened
piece of Cu foil, shown in the bottom view in Fig.
1, is suspended near the sample, with additional
Cu and constantan wires spot welded to it. The ac
signal produced by this sensor is fed into a second
lock-in, and the resulting dc voltage is used to
regulate the bulb voltage. Periodically this sec-
ond ac signal is measured with the HR-8. In anal-
ysis the data are corrected accordingly, to repre-
sent temperature modulation at constant heating
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amplitude. The bulb still, however, is the prin-
cipal source of random noise, which is about
0. 002 of the signal.

The corrected signal thus varies as the ratio of
the heat capacity of the copper sensor to that of
the sample. In analysis, this signal is multiplied
by 1-0.000667 (T in °C) ? to compensate for the
changing heat capacity of copper.

B. Temperature Modulation Method: Checks on Accuracy

When heat is supplied at a rate @ = Q,e’“?, the
temperature measured at the point where the sam-
ple is attached to the heat-leak strip is T'=Tp,

+ Tpe'!“*=®) where, to lowest order in w, and in the
limit that the internal thermal relaxation of the
heat-leak strip is much faster than the heating
modulation, 1°

2.2 K'A-I/Z
ra (1 9h L L 2

wC, 90  wir? " 3K,
_T afwts 1
and ¢ 5+ tan ( 5 ot )’ (3)
L2 o) b
with 7,=—"%  71,=—-% D =-S5 |
$ Dy ¢ K, CsPs

Here subscripts s and ! refer to sample and heat
leak. The c and % are gram specific heat and
thermal conductivity, while C, K, L, A, and p
are, respectively, total heat capacity, thermal
conductance, length in the direction of heat flow,
cross section normal to the heat flow, and density.
The 7, represents an internal sample relaxation
time which must < 1/w; the 7, is the time con-
stant for relaxation to the sink which must > 1/w.
(Throughout this section “sample” will refer to
our Gd-Cu-grease-Al sandwich. )

One may still do the experiment if the thermal
relaxation internal to the heat leak does not keep
up with the temperature modulation of the sample.
In the slow internal-leak-relaxation limit, 1*

2 1/2 1/2|=-1/2
Tp= [, 00 2\ 1 K (20C) ]
wC 90 wT) wT, 3K K
s e e s !

and ¢ =tan'[1+(wt)V2]+tan " bwr, ,  (4)
where 7= T7,(C,/C,) .

To check that szsz/ 90 is very small, we mea-
sured the phase shift up to high frequencies using
a CdS cell to detect the light modulation. The
phase shift is 90°+5° from 1.5 cps (the lower
limit of the lock-in) to about 19 cps. Assuming
that the leak-relaxation times are long, this is a
sensitive indication that at 4 cps no correction for
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T, is needed.

Our estimates indeed put us in the limit 7,< 1/w
at 4 cps, and close to the situation represented by
(4), with L, about twice as long as the leak “ther-
mal length” which can follow the temperature
modulation. We measured the time 7, by actually
looking at the sample thermocouple emf as heating
is turned off, using a Keithley 149 millimicrovolt-
meter, and found 7, to be 5 sec. Since C/C, is
about 3, we get 1/w7/=3%. The term (2/w7/)V?
is small and is inversely proportional to C,, so it
provides only a small constant correction to the
experimentally determined heat capacity and can
be ignored. The fourth correction term is small
and independent of C,. Thus, the sample heat
capacity is as close as desired to the inverse of
the signal observed.

C. Sample Preparation

Most of our data were obtained on samples cut
from a crystal made by the Aremco Corp. from
material supplied by the Lunex Co. A mass spec-
trographic analysis at the Materials Research
Laboratory facility showed about 0.1% rare-earth
impurities and about 0. 5% other impurities. Rec-
tangular pieces about 80X 60X 20 mils were spark
cut and mechanically polished to 5 mils thick.
They were annealed for 8 h at 1100 °C.

Sample X, for which the most data will be pre-
sented, was cut such that the ¢ axis would be per-
pendicular to the long dimensions. Laue X-ray
photographs show that the ¢ axis is 5° from this
direction; the spots are sharp. Its resistance
ratio is p(295 °K)/p(4 °K) =19.

Sample Y, included for comparison, was black-
ened and probably contaminated during the anneal-
ing process. The c axis is, within 1°, parallel to
the faces of largest area, and is 7° from parallel
to the longest edge. Its resistance ratio is 9.

III. DATA ANALYSIS AND RESULTS
A. Corrections to Raw Data

The inverse of the signal (after the corrections
for bulb brightness and the varying heat capacity
of the Cu light sensor) is proportional to

Ciot =Crag+Cy + Ce+CCu+cA1 +Cory (5)

the sum of the gadolinium magnetic, lattice, and
electronic heat capacities, and those of the copper
foil, the aluminum foil, and grease, respectively,
in the sandwich. Before fitting to find the expo-
nents @ and o’ in (1), we correct by subtracting
the temperature-varying parts of the other heat
capacities, to the necessary accuracy.

We estimate the contribution of the Cu and Al
from the relative volumes in the sandwich. The
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data are also compared with that of Griffel,
Skochdopole, and Spedding!* for the heat capacity
of gadolinium over a wide range. A rough fit gives
a check on the relative value of (Cg,+Cyy +Cyp),
indicating that C,, may be neglected. C; and C,
may also be estimated from the calculations in
Ref. 14. We find that the effect of C;+C, +C¢,

+ Cpy + C,p, may be adequately compensated for by
using (C,.; — Tx) for further fits, where x is about
0.0005 C,,:(30°C.).

Thermal expansion causes the exchange energy
to change, so to compare with the models dis-
cussed above, C, , must be determined from the
measured C, ;. The well-known expression C,
-C,=TVB2/K,, where B and K, are the volume
thermal expansion and volume isothermal com-
pressibility, may be used together with the Pippard
relations® for a second-order transition; C,
=TVEB+K, and Kp=B/E + K, where £ =(dP/dT),,
the slope of the “lambda line,” or the pressure
dependence of the Curie point, and K, and K, are
constants. We obtain the value of K; by comparing
our data and that of Ref. 14 with the thermal-ex-
pansion data of Cadieu and Douglass.!® £ has been
measured by Robinson, Milstein, and Jayaraman.!

From the values of 8 found by Cadieu and Doug-
lass, however, |81/ is always < K;(25°C), which
is the tabulated compressibility. Thus 8/£ may be
ignored; K does not vary significantly in the
transition region. With this approximation, from
the above,

C,=C, - (C, - K,?/TVEK . (6)

This is a significant correction in absolute terms
(several percent at the peak), but is not so impor-
tant for the form of the function. Suppose C,
= A, + B, then (6) leads to

C,=A€™*+B,
where A=A,+(A,/x)(2K,-2B,- A% (G))
and B =B, +(1/x)(2B,K, - B; - K?%) , (8)

with x=TV&2K,. The corrections may be found
using the known value of K, and the 4,, B,, and «
from our fits. We conclude that there is not
enough difference in the temperature dependence
of C, and C, to require correction. Thus T, a,
and o’ may be found directly from a fit of the C,
data.

The true C, curve might itself be distorted due
to a lattice contraction, in that each measurement
of C, at a new temperature is made with a new lat-
tice constant and thus a different J. The system
sees a different T, at each point. We investigated
the effect of expressing C=A€;* + B in terms of ¢,
where €,=¢€,+A€(T), with the aid of the above-

mentioned data and from the Pippard point of view.
Again, however, the difference between curves
with lattice contraction allowed, and not allowed,
is well within the noise in the region used for the
power-law fit.

B. Power-Law Fit

The whole range of measurements for sample X,
which produced the sharpest transition, is pre-
sented in Fig. 2. The numerical data correspond-
ing to these points may be found in the Appendix.

The analysis was suggested by Van der Hoeven,
Teaney, and Moruzzi.!® Itis assumedthat C=A€™®
+B, i.e., that C is a linear function of the quantity
€%, Given a set of data points C;(T';) (either above
or below T.) and a specified T and @, only al-
gebra is needed to fit a straight line to the function
C(e™®), i.e., to find A and B. Then x¥(Tg, a) is
calculated

N Ae~% - 2
- (9

where N is the number of data points and AC; is
the estimated random noise in measurement. The
computer prints xz for each of a large number of
combinations of T¢ and @. We require the values
Tc and @, which give the minimum value of ¥,
and the range over which an acceptable fit is pos-~
sible.

The heat-capacity curves clearly departed from
the pure singular behavior in regions of width
about 3 °C for sample X and 13 °C for sample Y.
Only points outside these regions were used for
power-law fits; if points too close to T'; were fed
into the analysis, no good fit to a power law was
found. Data at very high and very low tempera-
tures were not used for the fit, onthe assumption
that critical behavior is not likely to extend in-
definitely far away from 7T,. (The idea of the
critical region is discussed in Ref. 2.) This made
little difference to the fit, however, as can be seen
in the log-log plots.

On each side of the transition, using data approx-
imately in the range 10~ <€ <5X107?% good fits are
possible over a sizable range of a’s, depending on
which T is chosen. Figure 3 summarizes the in-
formation on T, @, and o obtained from sample
X. For each data set (above or below 7') the large
dot locates the minimum in ¥%. The solid line in-
dicates the a(or o') which minimizes y%, for any
given To. The dashed line is a line of constant
xz, arrived at by interpolating in the table of ¥*(T,
a) mentioned above. Roughly, we estimate at
least a 90% probability that the “true” combination
of T¢ and a(or a’) lies within the dashed boundary.
This estimate was arrived at by a rough integration
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FIG. 3. Results of power-law fits for sample X. The

large dots locate the x2 minima, for T>T¢and T< Tg,
in the (T'¢, @) or (T¢, @’) plane. The solid lines indicate
a for minimum x?, for any given choice of To. The
probability of the “true” (T, @) lying within the dashed
boundary (or its extension) is about 0.9, given our data.

Temperature variation of the magnetic heat capacity: the full range of data for sample X.

of the likelihood function L(7T, @)~ exp(- 3 x%) over
areas in the (T, a) plane.

For sample X, the above and below data agree
on a best Curie temperature of 18.2 °C, with «
=~0.17 and o’ =-0.29. The log-log plots in Fig.
4 demonstrate fits close to these. For compari-
son, Fig. 5 presents plots for T,=18.05°C, the
temperature necessary to fit the expression below
for a rounded curve.

We plotted [A€™®+ B ~ C(T)], the deviation of data
from the theoretical formula, for each of many
combinations of T, and @, with A and B given by
the computer fit. The best-looking plots, i.e.,
those which, to the eye, showed the least system-
atic deviation, were also the ones corresponding
to the plots of Fig. 4, the closest to the minimum
in xz.

C. Fit to Rounded Curve

Consider the magnet as made up of many re-
gions, each with a different Curie point.® (It is
known that the Curie point is rather sensitive to
such variables as impurity content and pressure,
and, in fact, it is hard to find two samples of the
same material with the same Curie point. %°) Sup-
pose that the heat capacity of the completely homo-
geneous material within each region is
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FIG. 4. Log-log plots for sample X, using approximately the parameters T¢, A(A’), and B(B’) which give the over-
all best power-law fit above (below) T¢. Thus, each point represents log;o[C(T) — B]=logyy(Ae™®) for a given datum
C(T) above T, etc. The short vertical lines define the data used in each power-law fit. The straight lines represent

ideal power-law behavior for the given o or o' .

Cpon(T> To)= A™®+B, T>T,

=A'e* +B, T=T, . (10)

Further, suppose that the distribution of T; among
the regions is Gaussian, centered on Ty, with a
half-width d. Then the heat capacity of the whole
crystal is

© 2
C=Kf Coon(T, To) exp(— @%ﬂ)—)dn . (11)
We compare our data with this expression.

The computer was asked to calculate a theoret-
ical C(T) according to (11), for each of a set of
temperatures T at which an experimental C had
been found. This was done for each of a number
of combinations of T'¢cy and d. Given Tg,, the pa-
rameters 4, A’, @, o', B, and B’ were fed in
which had given the minimum x% with T, as the
Curie point, in the power-law fit. (The normal-
ization factor K was computed to minimize x* once
the integration had been done.) ¥*(Tq,, d) was cal-
culated and a plot of deviations of the data from
(11) was made.

No set search program was used. The fit is

very sensitive to T'¢, and d, however, so not many
trials were required to find the best (T¢g, d) to the
nearest 0.01° in both parameters. This is shown
in Fig. 6, for sample X. T=18.05°C, d
=0.15°C, a=-0.1, and o' =-0. 3 for this curve.
Figure 7 displays the fit for sample ¥, with T
=18.08°C, d=0.55°, a=-0.05, and o' =-0.2.

IV. DISCUSSION

For comparison with Ising and Heisenberg mod-
els, Table I lists a number of recent theoretical
results for o and o'.

Figure 3 shows that a wide range of values for
a is allowed, depending on the T, chosen. The
predictions of - 0.2 for the spin-3 Heisenberg
model and of —0.1 or — 0. 07 for the classical or
spin-« Heisenberg model are all well within this
range.

Encouraged by the success of the fit to the
rounded curve, however, we will assume that the
inhomogeneity conjecture which led to Eq. (11) is
correct. Then T is pinned down to 18.05%0.02°C
for sample X, and « is restricted to —0.09+0.05.
This is in agreement with the prediction for the
spin-« Heisenberg model. It seems reasonable
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FIG. 5. Log-log plots for sample X using the parameters T, A(4’), and B(B') used for the “rounded fit”. The
short vertical lines define the data used in each power-law fit. The straight lines represent ideal power-law behavior
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FIG. 6. Experimental points for sample X compared with curve calculated from Eq. (11), using parameters T¢
=18.05°C, d=0.15°C, a=—0.1, and o/ =—0.3. The values of A, A’, B, and B’ are those which give the best power

law fits for T¢= T and this o and o’.
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FIG. 7. Experimental points for sample ¥ compared with curve calculated from Eq. (11), using parameters T¢
=18.08°C, d=0.65°C, a=-10.05, and o’ =—0.2. The values of A, A’, B, and B’ are those which give the best power-

law fits for T¢=T¢ and this o and o’.

that a spin-7 Heisenberg ferromagnet might be-
have more like the spin- case than the spin 3.

This choice of T, makes a’=-0.32+0.05. We
know of no theoretical predictions for o' for a
Heisenberg model; there may be a parallel in the
Ising model results of Table I which indicate that
@' is probably more negative than a, at least if
one looks at €>10™,

It is unlikely, but possible, that our results are
consistent with the scaling law a= o', 2 referring
to Fig. 3.

Table II compares these results for a and &’
with those of several other recent measurements
of critical magnetic heat capacities.

An interesting recent paper by Cadieu and
Douglass'® (CD) investigates the effect of impurity
concentration on the Curie point and on rounding
in gadolinium. Measurements of the thermal-ex-
pansion coefficient B (according to Pippard,
C,=TVEB+K,) are combined with previous heat-
capacity results of Voronel.?' Simple empirical
formulas result for T,, and AT=T;- T, as a func-
tion of resistance ratio, where T, and T, are the
temperatures for, respectively, the maximum C
(or 181) and the point of inflection on the high-
temperature side of the heat-capacity curve.
Neither T,, nor AT for our curves is in agree-

ment with these relationships: The temperatures
T, for samples X, ¥, and others are a degree or
more too high, well outside our confidence limits
for absolute-temperature measurement, and our
AT’s are too small by factors of 3 to 8. Nor was
there any clear correlation between T,, and AT for
a number of different samples.

The simple inhomogeneity model for rounding
which is expressed by (11) allows each small re-
gion of the crystal to undergo an ideal transition;
C or dC/de may indeed become infinite. If inho-
mogeneity does exist, the change in the fluctuation
spectrum invoked by CD to account for impurity
effects is not necessary to produce rounding. It at
least appears that this change has not occurred at
the distance from the Curie point which CD would
predict, given our resistance ratios. In fact, the
quality of the fits to (11) suggests that the rounding
in samples X and Y still may be due to inhomo-
geneity. %

What might be the source of this inhomogeneity ?
Our results for a number of different samples do
suggest that the purer the material, the less the
rounding. Annealing makes a tremendous differ-
ence in sharpening the peak, suggesting that in-
ternal strains are quite important. But the full
answer is still unclear.
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TABLE I. Series predictions for heat capacity. The critical indexes 7v,?Y’,8, and A are defined in Ref. 2.

Model o [ Comment
Ising, spin %
2 dimensions *P 0 0 a=a’
3 dimensions fcc © “positive,
of order ¥”

All lattices 9

ol
ool

All lattices ® 0.066 +0.16 Derived from v’, 8, as
T —-0.04 well as Cy series
Tetrahedral f 0 Behavior when €>1074
Tetrahedral ! 1 When € <1074
Heisenberg
Spin 3 fcc® —0.2 +0.05 C/R=(T¢/T)%[1.206—
0.966(1— T¢/T)%?]
in range
0.7= To/T= 0.96
Spin 3 fcc® -0.2 From scaling law
a=2—A+y
Classical,
several
lattices —-0.07 From a=2~A+Y
Classical fee ! -0.1 +£0.1 N, = nx=n§
Classical XY fect 0 £0.1 Ny <Te=1§
Spin 0 0.1 +0.1 nz>nx=n§
; i
Ising fec §in Hamiltonian
1
== 2T iqu T)aJsz'asja
Classical
all lattices ? —-0.07
XY model, spin } ~0.20£0.20 He==d Y, (01,0 +0405)
feck i
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APPENDIX: TABLE OF DATA FOR SAMPLE X

Cyx here represents the heat capacity of the gad-
olinium -copper-aluminum -grease sandwich, in
arbitrary units. It has been corrected to elimi-
nate the tempevrature -varying parts of the copper,
aluminum, grease, and gadolinium lattice and
electronic heat capacities by subtracting the quan-
tity 0.005T (°C) from the original total C. Thus,
to the best of our knowledge, the magnetic heat
capacity C, of gadolinium is ¥Cy +y, where x and
y are unknown constants. See Table III.
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TABLE III. Data for sample X.
T(°C) Cx T(°C) Cy T(°C) Cy

-27.4 12.00 16.60 14.10 18.39 12.22
-23.9 12.06 16.63 14.12 18.44 12.09
-19.1 12.23 16.87 14.20 18.59 11.95
~-16.4 12.28 17.12 14.24 18.84 11.80
—-13.8 12.33 17.13 14.24 19.34 11.63
-9.1 12.50 17.22 14.26 20.08 11.47
-6.6 12.57 17.32 14.28 20.54 11.38
-3.8 12.61 17.36 14.34 21.06 11.30
0.2 12.79 17.41 14.34 22.04 11.18
1.0 12.82 17.51 14.37 23.43 11.02
1.8 12.88 17.62 14.41 24.85 10.92
3.0 12.91 17.71 14.41 25.9 10.88
3.4 12.95 17.81 14.45 26.8 10.85
3.7 13.00 17.86 14.43 28.2 10.77
4.3 13.04 17.87 14.39 28.8 10.72
5.6 13.08 17.90 14.31 29.1 10.72
6.4 13.13 17.95 14.31 29.9 10.69
9.43 13.30 18.00 14.01 32.6 10.56
10.62 13.37 18.05 13.70 33.2 10.54
11.53 13.40 18.10 13.33 33.6 10.53
12.52 13.55 18.11 13.17 36.0 10.47
12.74 13.55 18.15 13.00 36.2 10.47
13.97 13.66 18.20 12,79 39.2 10.40
14.51 13.74 18.24 12.58 39.0 10.35
14.68 13.76 18.29 12.42 42.2 10.32
15.65 13.94 18.34 12.31 45.6 10.24
16.14 14.04 18.35 12.22 50.0 10.16
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